Alloying behaviour in nanocrystalline materials during mechanical alloying
نویسندگان
چکیده
منابع مشابه
Nanocrystalline Hydroxyapatite/Si Coating by Mechanical Alloying Technique
A novel approach for depositing hydroxyapatite (HA) films on titanium substrates by using mechanical alloying (MA) technique has been developed. However, it was shown that one-hour heat treatment at 800°C of such mechanically coated HA layer leads to partial transformation of desired HA phase to beta-tri-calcium phosphate (β-TCP) phase. It appears that the grain boundary and interface defects f...
متن کاملFormation Mechanism and Enthalpy of Mixing of Nanocrystalline NiTi Intermetallic during Mechanical Alloying
متن کامل
Formation Mechanism and Enthalpy of Mixing of Nanocrystalline NiTi Intermetallic during Mechanical Alloying
متن کامل
Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process
In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...
متن کاملSynthesis and Characterization of Nanocrystalline Ni3Al Intermetallic during Mechanical Alloying Process
In this research, formation of nanocrystalline Ni3Al intermetallic from Ni and Al elemental powders by mechanical alloying (MA) process and its characterization was investigated. Therefore, the evolutions in microstructure such as phase transformation, oxidation in air and introduction of Fe impurity from milling media after MA were evaluated using XRD, Rietveld refinement, TEM, SEM, EDS and IC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Materials Science
سال: 1999
ISSN: 0250-4707,0973-7669
DOI: 10.1007/bf02749938